If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0.81x2 + 70x = 1 Reorder the terms: 70x + 0.81x2 = 1 Solving 70x + 0.81x2 = 1 Solving for variable 'x'. Reorder the terms: -1 + 70x + 0.81x2 = 1 + -1 Combine like terms: 1 + -1 = 0 -1 + 70x + 0.81x2 = 0 Begin completing the square. Divide all terms by 0.81 the coefficient of the squared term: Divide each side by '0.81'. -1.234567901 + 86.41975309x + x2 = 0 Move the constant term to the right: Add '1.234567901' to each side of the equation. -1.234567901 + 86.41975309x + 1.234567901 + x2 = 0 + 1.234567901 Reorder the terms: -1.234567901 + 1.234567901 + 86.41975309x + x2 = 0 + 1.234567901 Combine like terms: -1.234567901 + 1.234567901 = 0.000000000 0.000000000 + 86.41975309x + x2 = 0 + 1.234567901 86.41975309x + x2 = 0 + 1.234567901 Combine like terms: 0 + 1.234567901 = 1.234567901 86.41975309x + x2 = 1.234567901 The x term is 86.41975309x. Take half its coefficient (43.20987655). Square it (1867.093431) and add it to both sides. Add '1867.093431' to each side of the equation. 86.41975309x + 1867.093431 + x2 = 1.234567901 + 1867.093431 Reorder the terms: 1867.093431 + 86.41975309x + x2 = 1.234567901 + 1867.093431 Combine like terms: 1.234567901 + 1867.093431 = 1868.327998901 1867.093431 + 86.41975309x + x2 = 1868.327998901 Factor a perfect square on the left side: (x + 43.20987655)(x + 43.20987655) = 1868.327998901 Calculate the square root of the right side: 43.224159898 Break this problem into two subproblems by setting (x + 43.20987655) equal to 43.224159898 and -43.224159898.Subproblem 1
x + 43.20987655 = 43.224159898 Simplifying x + 43.20987655 = 43.224159898 Reorder the terms: 43.20987655 + x = 43.224159898 Solving 43.20987655 + x = 43.224159898 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-43.20987655' to each side of the equation. 43.20987655 + -43.20987655 + x = 43.224159898 + -43.20987655 Combine like terms: 43.20987655 + -43.20987655 = 0.00000000 0.00000000 + x = 43.224159898 + -43.20987655 x = 43.224159898 + -43.20987655 Combine like terms: 43.224159898 + -43.20987655 = 0.014283348 x = 0.014283348 Simplifying x = 0.014283348Subproblem 2
x + 43.20987655 = -43.224159898 Simplifying x + 43.20987655 = -43.224159898 Reorder the terms: 43.20987655 + x = -43.224159898 Solving 43.20987655 + x = -43.224159898 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-43.20987655' to each side of the equation. 43.20987655 + -43.20987655 + x = -43.224159898 + -43.20987655 Combine like terms: 43.20987655 + -43.20987655 = 0.00000000 0.00000000 + x = -43.224159898 + -43.20987655 x = -43.224159898 + -43.20987655 Combine like terms: -43.224159898 + -43.20987655 = -86.434036448 x = -86.434036448 Simplifying x = -86.434036448Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.014283348, -86.434036448}
| 11x=2+3 | | -12+4-(-6)= | | 6=2*(4+2) | | -4y-12=x | | 12x+60+32=180 | | X=1/6y | | 7+(-8)-1= | | (4+7)(m+3)= | | (8r+9)(9r+8)= | | 8(x-3)=x+4 | | 25+18m=46+6m | | 42=7*(z-3) | | 2xsquared+21=5x | | -.83P+7=-23 | | 8(x-3)=x-3 | | 2*(t+1)=10 | | 20+3x=41 | | 20.48=v/8 | | 16+w+13=-14 | | 0.09y=180+0.025y | | (5x^7*8x^6)/(24x^5) | | 0.09y=630+0.2y | | 3f+3.6=10.8 | | 0.5(-4+6x)=0.333333333333333333333333333333333333333334x+0.66666666666666666666666667(x+9) | | 8(x+3)=x+3 | | 32=-9u^4+12u^3+24u | | 3t^2=21t | | 5/6x-6=-1 | | 7.85-2.15a=20.75 | | 3x+2-5(x+2)=4 | | 5x/8-5=4 | | 14/6-x=4 |